Biodiversity dynamics: scale and function
We have long standing interests in the causes and consequences of plant diversity, using experimental and survey-based approaches. For example, past research using experimental microcosms has established links between the local genotypic diversity of limestone grassland species and rates of pasture productivity. Most of the plants of this community are obligate outbreeders that display considerable local variation, much of which has been shown to have a genetic basis. We have shown that such differences between individuals are an important driver of the overall biodiversity of this ecosystem.
We also have interests in the measurement and interpretation of survey-based plant diversity data. Patterns of biodiversity—such the number of species in a given area—are scale-dependent, meaning that their shape depends on the spatial grain and extent examined. As a consequence, many of the most well-studied patterns in ecology—such as species-area and species-time curves, species-abundance distributions, measures of beta diversity, diversity-environment relationships—all take on different functional forms when examined in small vs. large areas (or over small vs. long durations), and will thus defy generalization until researchers can account for scale sensitivity. We are particularly interested in how the distribution of plant diversity at ‘fine' scales (e.g., vegetation plots) reflects the distribution of diversity at broader scales.